Synthesis and Characterization of Pentaarylated [60]Fullerene Coordinated Complexes $[(\eta^2 - Ar_5C_{60}H)M(PPh_3)_2]$ (M = Pt, Pd) and an ab initio Study on Their Isomerism

Li-Cheng Song,*[a] Peng-Chong Liu,[a] Qing-Mei Hu,[a] Zhenyang Lin,[b] and Yi-Bo Wang[b]

Keywords: Ab initio calculations / Fullerenes / Isomerism / Palladium / Platinum

This paper reports on the first examples of η^2 -pentaarylated [60]fullerene organometallic complexes [$(\eta^2-Ar_5C_{60}H)$ - $M(PPh_3)_2$] (1: Ar = Ph, M = Pt; 2: Ar = m-MeC₆H₄, M = Pt; 3: $Ar = p-MeC_6H_4$, M = Pt; **4**: Ar = Ph, M = Pd; **5**: Ar = m-1 MeC_6H_4 , M = Pd; **6**: $Ar = p-MeC_6H_4$, M = Pd), which were synthesized by treatment of $[M(PPh_3)_4]$ with $Ar_5C_{60}H$ and fully characterized by elemental analyses and their ¹H NMR, ³¹P NMR, IR, UV/Vis, and FAB-MS data. The ¹H NMR spectra displayed by the protons directly bonded to the C_{60} core and the 31P NMR spectra caused by the PPh3 ligands indicated that complexes 1-6 exist as mixtures of isomers. To gain insights into the isomerism of 1-6, the regioselectivity of the pentaarylated derivatives $Ar_5C_{60}H$ as ligands coordinated to Pt⁰ or Pd⁰ has been studied by means of ab initio calculations. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

It is known that the [60] fullerene derivatives Ar₅C₆₀H were first synthesized by a three-pot method starting from C₆₀, involving chlorination of C₆₀ to give C₆₀Cl₆, arylation of C₆₀Cl₆ with benzene or substituted benzene, and reduction of Ar₅C₆₀Cl with an excess of PPh₃.^[1,2] Later on, a more convenient one-pot method for preparation of Ar₅C₆₀H was discovered, involving treatment of C₆₀ with organocopper/magnesium reagents Ar₂CuMgBr, followed by treatment of the reaction mixture with aqueous NH₄Cl.^[3,4] It is conceivable that the pentaarylated [60]fullerene derivatives Ar₅C₆₀H might form organometallic complexes with single, double, triple, and even multiple metal centers through their pentaarylated cyclopentadienyl rings and other sites of the C₆₀ core in a variety of coordination modes from η^1 to η^6 . Up to now, however, except for the η⁵-pentaarylated [60]fullerene organometallic compounds such as η^5 -Ph₅C₆₀M (M = Li, K, Tl, CuPEt₃),^[3] there are no other reported organometallic complexes that contain pentaarylated [60]fullerene ligands coordinated to metal centers in a mode from η^1 to η^4 or in an η^6 -fashion.

During recent years we have been interested in the synthesis, structural characterization, and properties of organotransition metal fullerene derivatives.^[5] As part of this pro-

Results and Discussion

Synthesis and Characterization of Complexes $[(\eta^2 - Ar_5C_{60}H)M(PPh_3)_2] (1-6)$

An equivalent of each transition metal complex $[M(PPh_3)_4]$ (M = Pt, Pd) was treated with a pentaarylated [60] fullerene derivative $Ar_5C_{60}H$ (Ar = Ph, m-MeC₆H₄, p-MeC₆H₄) in THF at room temperature to give six products $[(\eta^2-Ar_5C_{60}H)M(PPh_3)_2](1-6)$ in 51-63% yields, as shown in Scheme 1.

$$Ar_5C_{60}H + M(PPh_3)_4$$
 THF
 Ar
 PPh_3
 Ar
 PPh_3

	1	2	3	4	5	6	
Ar	Ph	m-MeC ₆ H ₄	p-MeC ₆ H ₄	Ph	m-MeC ₆ H ₄	p-MeC ₆ H ₄	
M	Pt	Pt	Pt	Pd	Pd	Pd	
%	53	63	55	58	51	58	

Scheme 1

© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ject, we recently carried out an investigation into the reactions between transition metal complexes $[M(PPh_3)_4]$ (M = Pt, Pd) and pentaarylated [60] fullerene derivatives Ar₅C₆₀H to see which type of coordination mode might be adopted by Ar₅C₆₀H in the products and whether the ligand-exchange reaction might be regioselective toward the reactive sites of pentaarylated [60]fullerene derivatives Ar₅C₆₀H. Here we report our results.

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China Fax: (internat.) + 86-22/23504853

E-mail: lcsong@public.tpt.tj.cn

Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China

Apparently, products **1**–**6** can be formally regarded – similarly to the parent [60]fullerene metal complexes [(η^2 - C_{60})M(PR₃)₂] (M = Pt,^[6] Pd^[7]) – as deriving from displacement of one PPh₃ ligand from M(PPh₃)₃ {generated in situ through dissociation of one PPh₃ ligand of starting material [M(PPh₃)₄]} by one equivalent of Ar₅C₆₀H. Interestingly, products **1**–**6** are, to the best of our knowledge, the first organometallic complexes containing pentaarylated [60]fullerene ligands Ar₅C₆₀H coordinated to transition metals through their [6:6] bonds in an η^2 -fashion.

Products 1–6 have been characterized by elemental (C,H,P) analysis and spectroscopic methods. In their FAB-MS spectra, while products 1–3, 5, and 6 show their molecular ions M^+ and their pentaarylated [60]fullerene ligand ions $Ar_5C_{60}H^+$ (Ar = Ph, m-MeC₆H₄, p-MeC₆H₄), product 4 displays the largest fragment ion [M^+ – Pd] and pentaarylated [60]fullerene ligand ion $Ph_5C_{60}H^+$. The UV/Vis spectra of 1–6 are all very similar to one another and each exhibits three absorption bands in the 239–489 nm range. In addition, the IR spectra of 1–6 each include four absorption bands, at 1431–1435, 1193–1190, 579–591, and 534–540 cm⁻¹, which resemble those of the free ligands $C_{60}^{[8]}$ and $Ar_5C_{60}H$ (Ar = Ph, [1] m-MeC₆H₄, [9] p-MeC₆H₄, [9]).

For the ¹H NMR spectra, it should be noted that, while the hydrogen atom directly bonded to the C_{60} core in each of the free ligands $Ar_5C_{60}H$ (Ar = Ph,^[3] m-MeC₆H₄,^[9] p- $MeC_6H_4^{[2]}$) displays only one singlet at $\delta = 5.2-5.3$ ppm, the corresponding hydrogen atom in each of the compounds 1-6 exhibits two to four singlets at $\delta =$ 5.1-5.3 ppm. This implies that 1-6 might exist as mixtures of isomers. Similarly to the ¹H NMR spectra, the ³¹P NMR spectra of 1-6 each show two to four singlets at $\delta =$ 29-33 ppm for the P atoms, which also suggests that compounds 1-6 exist as isomer mixtures. The ³¹P NMR spectra of 1-3, however, in contrast to those of 4-6, have two groups of satellite peaks at both sides of the groups of singlets at $\delta \approx 30$ ppm, caused by ¹⁹⁵Pt-³¹P coupling. It is worth noting that the chemical shifts ($\delta \approx 30$ pm) of 1–6 and the ¹⁹⁵Pt-³¹P coupling constants ($J \approx 3960 \text{ Hz}$) of 1-3 are similar to those of $[(\eta^2-C_{60})Pt(PPh_3)_2]^{[6,10]}$ and $[(\eta^2-C_{60})Pt(PPh_3)_2]^{[6,10]}$ C₆₀)Pd(PPh₃)₂],^[7] apparently due to their similar structures. Figures 1 and 2 show the partial ¹H NMR and the whole ³¹P NMR spectra of products 2 and 4, respectively. The four singlets at $\delta \approx 5.2$ ppm in Figure 1(a) could each be assigned to the hydrogen atom directly bonded to C₆₀ core in each of four isomers of product 2, whereas the four singlets at $\delta \approx 30$ ppm in Figure 1(b) could each be attributed to the two P atoms in each of the four isomers. Similarly, the three singlets at $\delta \approx 5.3$ ppm in Figure 2(a) and the three singlets at $\delta \approx 30$ ppm in Figure 2(b) could be assigned to the hydrogen atoms directly bonded to the C₆₀ cores and to the P atoms in three isomers of product 4, respectively. In order to obtain some further details concerning the possible isomers of 1-6, we carried out a computational study on the simplest ligand Ph₅C₆₀H and its Pt complex $[(\eta^2-Ph_5C_{60}H)Pt(PPh_3)_2]$ (1).

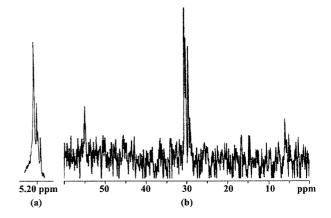


Figure 1. The partial ¹H NMR (a) and ³¹P NMR (b) spectra of 2

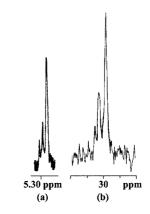


Figure 2. The partial ¹H NMR (a) and ³¹P NMR (b) spectra of 4

Computational Study on Possible Isomers of 1-6

As shown in Figure 3, the pentaarylated hydro[60]fullerenes $Ar_5C_{60}H$ (Ar = Ph, m-Me C_6H_4 , p-Me C_6H_4), unlike the highly I_h -symmetric [60]fullerene, are C_s -symmetric molecules, each of which contains a series of carbon-carbon double bonds represented by A-O, B', C', $\mathbf{E}' - \mathbf{K}'$ and $\mathbf{M}' - \mathbf{O}'$. The double bonds represented by capital letters and those represented by the corresponding capital letters with primes are located symmetrically on the two sides of the symmetrical plane of Ar₅C₆₀H, which are actually the same in terms of their ability to coordinate with metal atoms M (M = Pt, Pd). Hence, each of the pentaarylated Ar₅C₆₀H has 14 kinds of [6:6] double bonds formed between two six-membered rings represented by A-N or A, B', C', D, E'-K', L, M', N' and one kind of [6:5] double bonds formed between six- and five-membered rings, represented by O and O'. However, since the L-O or M'-O'double bonds could not coordinate with metal atoms M, due to the great steric hindrance between the two large PPh₃ ligands attached to M and the five aryl groups located around the double bonds L-O or M'-O', products $[(\eta^2 Ar_5C_{60}H)M(PPh_3)_2$ (1-6) each have only 11 possible structural isomers A-K or A, B', C', D, E'-K' generated through coordination of the remaining 11 kinds of the corresponding [6:6] double bonds. In fact, the isomers, which are derived from coordination of the [6:6] double bonds B', C', and E'-K' with M atoms, are the enantiomers of isomers B, C, and E-K.

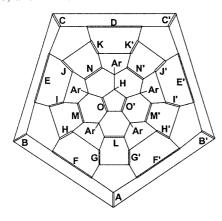


Figure 3. Possible $\eta^2\text{-coordinating}$ sites of $Ar_5C_{60}H$ in a Schlegel diagram

Computational chemistry methods had previously been utilized to study [60]fullerene platinum and palladium complexes in the model complex $[(\eta^2-C_{60})Pt(PH_3)_2]$. In order to further establish the actually existing isomers of 1-6 and the regioselectivity of the involved η^2 -Ar₅C₆₀H ligands in the products, we chose the platinum complex $[(\eta^2-Ph_5C_{60}H)Pt(PPh_3)_2]$ (1) as a representative with which to carry out ab initio DFT calculations on its 11 possible isomers. It is worth noting that we did not use $[(\eta^2-Me_5C_{60}H)Pt(PH_3)_2]$ as a model complex in calculations in this case, since it is oversimplified for the strong steric hindrance existing between the phenyl groups in 1, which is very important for the isomer energies and the 1H NMR calculations.

Density functional theory (DFT) calculations at the B3LYP level were performed in full structural optimizations. With the optimized structures, the 1H magnetic shielding coefficients for the proton directly bonded to the C_{60} core were obtained by Hartree–Fock GIAO method. The energies and isotropic 1H magnetic shielding coefficients are compiled in Table 1.

The reaction involved in the production of the 11 isomers is assumed to be thermodynamically controlled. Provided

that a transformation equilibrium among all of the 11 isomers is present, the abundances of the isomers would be determinable only by their energy differences according to the Boltzmann distribution, as shown in Equation (1), where k, T, n_i , p_i , and E_i are the Boltzmann constant, absolute temperature, number of enantiomers of isomer i, and the abundance and energy of isomer i, respectively.

$$p_i = n_i e^{-E_i/kT} / \sum_j n_j e^{-E_j/kT}$$
 (1)

As can be seen from Table 1, only six (namely **A**-**F**) of the 11 isomers have noticeable abundances at 298 K, the other isomers **G**-**K** derived from the corresponding double bonds **G**, **H**, **I**, **J**, and **K** having very low abundance.

The simulated partial ¹H NMR spectrum can be drawn from the isomer abundance data (peak areas) and the calculated ¹H shielding coefficients (chemical shifts). Figure 4(b) shows the calculated ¹H NMR spectrum of the isomer mixture of 1, in which the peaks of isomers **F** and **A** or **B** and **D** are overlapped due to their very close values of the shielding coefficients. The similarity of Figure 4(b) with the actual spectrum Figure 4(a) suggests that the ab initio result is logical and acceptable. The four ¹H NMR signals of the proton directly bonded to the C₆₀ core shown in Figure 4(a) can be assigned to isomers **F**+**A**, **B**+**D**, **C**, and **E**, respectively. It follows that this computational result is different from our initial assignment described above, in which each experimental singlet is related to one single isomer.

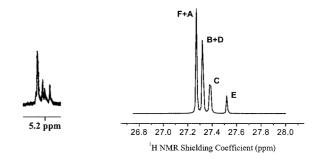


Figure 4. The partial ¹H NMR spectrum of the isomer mixture of 1

Table 1. Calculated properties of the isomers of 1

Coordination site of Pt	Number of enantiomer(s)	Energy [a. u.]	Estimated abundance at 298 K	¹ H magnetic shielding coefficient [ppm]
B/B'	2	-4935.59686992	0.296691	27.3226
\mathbf{C}/\mathbf{C}'	2	-4935.59680000	0.275489	27.3849
A	1	-4935.59679828	0.137494	27.2744
\mathbf{F}/\mathbf{F}'	2	-4935.59637593	0.175715	27.2699
D	1	-4935.59572960	0.044272	27.3296
\mathbf{E}/\mathbf{E}'	2	-4935.59551091	0.070218	27.5225
H/H'	2	-4935.58867981	0.000050	27.4275
J/J'	2	-4935.58803199	0.000025	27.2833
G/G'	2	-4935.58764336	0.000017	27.2804
K/K′	2	-4935.58761027	0.000016	27.7785
I/I'	2	-4935.58735725	0.000012	27.8293

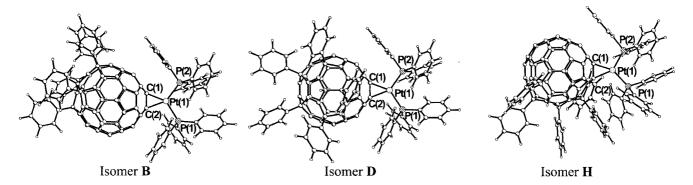


Figure 5. Optimized structures of isomers B, D, and H

Some of the structural parameters of the optimized structures for isomers B, D, and H, together with the corresponding values of the crystal structure of $[(\eta^2 - \eta^2 - \eta^2 - \eta^2)]$ C₆₀)Pt(PPh₃)₂],^[10] are presented in Table 2, whereas Figure 5 shows the optimized structures of the three isomers.

As shown in Table 2, the calculated values for the optimized structures are similar to the crystal structural data of $[(\eta^2-C_{60})Pt(PPh_3)_2]$, which indicates the accuracy of the calculation. That we chose the optimized structures of isomers **B**, **D**, and **H** is to illustrate that the stability and thus the abundance of each isomer is directly related to the steric effect. As can be seen intuitively in Figure 5, the phenyl groups in both Ph₅C₆₀H and PPh₃ are most crowded in isomer H, then intermediate in isomer D, and least crowded in isomer B. This is consistent with the magnitudes of the abundances $\mathbf{B} > \mathbf{D} > \mathbf{H}$ shown in Table 1. In addition, the energy sequence $\mathbf{B} < \mathbf{D} < \mathbf{H}$ shown in Table 1 is also consistent with the magnitudes of the steric repulsion between the five C₆₀-bonded phenyl groups and the six phenyl groups of the two tertiary phosphane ligands in B, D, and H. In fact, isomers A, B/B', and C/C' are the most stable ones, since the steric repulsions in these isomers are among the smallest. Finally, it can be concluded that the steric repulsion between the bulky phenyl substituents is most probably the key factor for the regioselectivity of Ar₅C₆₀H li-

Table 2. Selected structural parameters of $[(\eta^2-C_{60})Pt(PPh_3)_2]$ and isomers B, D, and H

Compound	$(\eta^2\text{-}C_{60})\text{Pt}(\text{PPh}_3)_2$	В	D	Н
Bond lengths [Å]:				
C(1)-C(2)	1.502	1.515	1.509	1.511
Pt(1) - C(1)	2.145	2.137	2.133	2.117
Pt(1)-C(2)	2.115	2.142	2.147	2.187
Pt(1) - P(1)	2.304	2.362	2.362	2.366
Pt(1) - P(2)	2.254	2.348	2.348	2.357
Bond angles [°]:				
C(2)-C(1)-Pt(1)	68.3	69.4	69.9	72.0
C(1)-C(2)-Pt(1)	70.4	69.1	68.8	67.0
C(1)-Pt(1)-C(2)	41.3	41.5	41.3	41.1
C(2)-Pt(1)-P(1)	107.1	101.1	102.5	111.2
C(1)-Pt(1)-P(2)	109.2	105.3	104.7	101.3
P(1)-P(1)-P(2)	102.4	112.1	111.5	101.3

gands in coordinating with transition metals Pt and Pd in an η^2 -fashion to form products 1-6.

Experimental Section

General: All reactions were carried out under highly purified nitrogen by use of standard Schlenk or vacuum-line techniques. THF was distilled from Na/benzophenone ketyl. All solvents were bubbled with nitrogen for at least 15 min before use. [Pt(PPh₃)₄],^[15] $[Pd(PPh_3)_4]$, [16] $Ph_5C_{60}H$, [3] $(m-MeC_6H_4)_5C_{60}H$, [9] and $(p-m-MeC_6H_4)_5C_{60}H$, [9] MeC₆H₄)₅C₆₀H^[9] were prepared by literature methods. IR spectra were measured with a Bio-Rad FTS 135 spectrophotometer, whereas ¹H{³¹P} NMR and UV/Vis spectra were recorded with a Bruker AC P200 and a Shimadzu UV 240 spectrometer, respectively. Elemental analysis of C and H was performed with an Elementar Vario EL analyzer, while P was determined by the vanadomolybdophosphoric acid colorimetric method. Melting points were determined with a Yanaco MP-500 apparatus.

Preparation of $[(\eta^2-Ph_5C_{60}H)Pt(PPh_3)_2]$ (1): A 100-mL threenecked flask fitted with a stirrer bar, a serum cap, and an N₂ inlet tube was charged with Ph₅C₆₀H (44 mg, 0.04 mmol) and THF (15 mL). Pt(PPh₃)₄ (50 mg, 0.04 mmol) was then added and the reaction mixture was stirred for 0.5 h at room temperature. After removal of the solvent under vacuum, the residue was chromatographed on an Al₂O₃ column with toluene/petroleum ether (3:2) as eluent, and the pink band was collected. After removal of the solvent, 42 mg (57%) of 1 was obtained as a red-brown solid. M.p. > 300°C. ¹H NMR (200 MHz, CDCl₃, TMS): $\delta = 5.13$, 5.20, 5.22, 5.28 (4 s, 1 H, C₆₀H), 7.05–7.90 (m, 55 H, 11 Ph) ppm. ³¹P NMR [81.0 MHz, toluene, (CD₃)₂CO lock signal, H_3PO_4]: $\delta = 28.95$, 29.35, 29.96, 30.24 (4 s surrounded with satellite peaks, J_{Pt-P} = 3959 Hz, 2 P) ppm. IR (KBr): $\tilde{v} = 516.5$ (s), 534.7 (m), 585.0 (w), 693.3 (vs), 742.4 (s), 1029.3 (w), 1094.6 (m), 1434.3 (s), 1491.9 (m), 1598.4 (w), 2863.8 (w), 2952.5 (w), 3056.7 (w) cm⁻¹. UV/Vis (THF): λ_{max} (log ϵ) = 239.7 (5.14), 288.7 (4.98), 488.9 (4.18) nm. FAB-MS: $m/z = 1826 [(Ph_5C_{60}H)Pt(PPh_3)_2^+, ^{196}Pt], 1107$ [Ph₅C₆₀H⁺]. C₁₂₆H₅₆P₂Pt (1826.86): calcd. C 82.84, H 3.09, P 3.39; found C 82.56, H 3.35, P 3.43.

Preparation of $[\{\eta^2-(m-\text{MeC}_6H_4)_5\text{C}_{60}H\}\text{Pt}(\text{PPh}_3)_2]$ (2): Similarly, when (m-MeC₆H₄)₅C₆₀H (47 mg, 0.04 mmol) was used in place of Ph₅C₆₀H, 2 (48 mg, 63%) was obtained as a red-brown solid. M. p. > 300°C. ¹H NMR (200 MHz, CDCl₃, TMS): $\delta = 2.03, 2.06, 2.17$ $(3 \text{ s}, 15 \text{ H}, \text{CH}_3 + 2 \text{ CH}_3 + 2 \text{ CH}_3), 5.13, 5.19, 5.21, 5.26 (4 \text{ s}, 1)$ H, $C_{60}H$), 7.00-7.90 (m, 50 H, $6 Ph + 5 C_6H_4$) ppm. ³¹P NMR [81.0 MHz, toluene, (CD₃)₂CO lock signal, H₃PO₄]: $\delta = 29.02$, 29.43, 29.99, 30.28 (4 s surrounded with satellite peaks, $J_{\text{Pt-P}} = 3962$ Hz, 2 P) ppm. IR (KBr): $\tilde{v} = 516.9$ (s), 534.1 (m), 580.0 (w), 693.2 (vs), 747.4 (s), 1094.5 (m), 1434.1 (m), 1480.2 (m), 1603.7 (w), 2856.0 (w), 2921.6 (w), 3052.9 (w) cm⁻¹. UV/Vis (THF): λ_{max} (log ϵ) 240.1 (5.16), 288.3 (5.01), 489.1 (4.20) nm. FAB-MS: m/z = 1895 [{(MeC₆H₄)₅C₆₀H}Pt(PPh₃)₂+, ¹⁹⁵Pt], 1177 [(MeC₆H₄)₅C₆₀H⁺]. C₁₃₁H₆₆P₂Pt (1896.99): calcd. C 82.94, H 3.51, P 3.26; found C 82.79, H 3.74, P 2.91.

Preparation of $[\{\eta^2-(p\text{-MeC}_6H_4)_5C_{60}H\}Pt(PPh_3)_2]$ (3): Similarly, when (p-MeC₆H₄)₅C₆₀H (47 mg, 0.04 mmol) was used in place of Ph₅C₆₀H, 3 (42 mg, 55%) was obtained as a red-brown solid. M. p. > 300°C. ^{1}H NMR (200 MHz, CDCl₃, TMS): δ = 2.26, 2.31, 2.36 $(3 \text{ s}, 15 \text{ H}, \text{ CH}_3 + 2 \text{ CH}_3 + 2 \text{ CH}_3), 5.06, 5.11, 5.13, 5.20 (4 \text{ s}, 1)$ H, $C_{60}H$), 6.95–7.85 (m, 50 H, 6 Ph + 5 $C_{6}H_{4}$) ppm. ^{31}P NMR [81.0 MHz, toluene, $(CD_3)_2CO$ lock signal, H_3PO_4]: $\delta = 29.04$, 29.44, 30.01, 30.33 (4 s surrounded with satellite peaks, J_{Pt-P} = 3959 Hz, 2 P) ppm. IR (KBr): $\tilde{v} = 517.0$ (s), 534.9 (s), 583.0 (w), 692.8 (vs), 742.8 (s), 1095.6 (m), 1186.6 (m), 1434.6 (m), 1476.8 (m), 1509.2 (vs), 2848.3 (w), 2863.8 (w), 2952.5 (w), 3022.0 (w), 3052.9 (w) cm $^{-1}.$ UV/Vis (THF): λ_{max} (log $\epsilon) 239.1 (5.16), 287.9$ (4.13) nm. FAB-MS: m/z = 1895487.5 $[\{(MeC_6H_4)_5C_{60}H\}Pt(PPh_3)_2^+, ^{195}Pt], 1177 [(MeC_6H_4)_5C_{60}H^+],$ 720 $[C_{60}^{+}]$. $C_{131}H_{66}P_{2}Pt$ (1896.99): calcd. C 82.94, H 3.51, P 3.27; found C 83.17, H 3.63, P 3.18.

Preparation of [(η²-Ph₅C₆₀H)Pd(PPh₃)₂] (4): Similarly to the preparation of **1**, when [Pd(PPh₃)₄] (46 mg, 0.04 mmol) was used in place of [Pt(PPh₃)₄], **4** (40 mg, 58%) was obtained as a red-brown solid. M. p. > 300°C. ¹H NMR (200 MHz, CDCl₃, TMS): δ = 5.28, 5.30, 5.31 (3 s, 1 H, C₆₀H), 7.10–7.85 (m, 55 H, 11 Ph) ppm. ³¹P NMR [81.0 MHz, toluene, (CD₃)₂CO lock signal, H₃PO₄]: δ = 29.05, 31.22, 32.41 (3 s, 2 P) ppm. IR (KBr): \tilde{v} = 486.0 (w), 513.0 (w), 540.0 (m), 692.0 (s), 739.0 (w), 1027.0 (w), 1093.0 (m), 1431.0 (m), 1490.0 (w), 1599.0 (w), 2863.0 (w), 2926.0 (w), 3058.0 (w) cm⁻¹. UV/Vis (THF): λ_{max} (log ε) 240.5 (5.04), 287.5 (4.83), 472.0 (3.99) nm. FAB-MS: m/z = 1630 [{(Ph₅C₆₀H)Pd(PPh₃)₂ – Pd}⁺], 1107 [Ph₅C₆₀H⁺]. C₁₂₆H₅₆P₂Pd (1738.20): calcd. C 87.07, H 3.25, P 3.56; found C 87.14, H 3.51, P 3.74.

Preparation of [$\{\eta^2$ -(m-MeC₆H₄)₅C₆₀H $\}$ Pd(PPh₃)₂] (5): Similarly to the preparation of **2**, when [Pd(PPh₃)₄] (46 mg, 0.04 mmol) was used in place of [Pt(PPh₃)₄], **5** (37 mg, 51%) was obtained as a redbrown solid. M. p. > 300° C. 1 H NMR (200 MHz, CDCl₃, TMS): δ = 2.01, 2.06, 2.17 (3 s, 15 H, CH₃ + 2 CH₃ + 2 CH₃), 5.25, 5.27 (2 s, 1 H, C₆₀H), 6.95 – 7.80 (m, 50 H, 6 Ph + 5 C₆H₄) ppm. 31 P NMR [81.0 MHz, toluene, (CD₃)₂CO lock signal, H₃PO₄]: δ = 29.05, 31.27 (2 s, 2 P) ppm. IR (KBr): \tilde{v} = 486.0 (w), 505.0 (w), 540.0 (s), 591.0 (w), 688.0 (s), 719.0 (s), 750.0 (m), 996.0 (w), 1027.0 (w), 1093.0 (w), 1120.0 (s), 1178.0 (m), 1435.0 (m), 1482.0 (w), 1597.0 (w), 1607.0 (m), 2856.0 (w), 2918.0 (w), 3043.0 (w) cm⁻¹. UV/Vis (THF): λ_{max} (log ε) 239.5 (5.09), 287.7 (4.93), 470.5 (4.00) nm. FAB-MS: m/z = 1806 [{(MeC₆H₄)₅C₆₀H}Pd(PPh₃)₂+, 106 Pd], 1177 [(MeC₆H₄)₅C₆₀H+]. C₁₃₁H₆₆P₂Pd (1808.33): calcd. C 87.01, H 3.68, P 3.43; found C 87.06, H 3.75, P 3.48.

Preparation of [$\{\eta^2-(p-\text{MeC}_6\text{H}_4)_5\text{C}_{60}\text{H}\}\text{Pd}(\text{PPh}_3)_2$] (6): Similarly to the preparation of 3, when [Pd(PPh₃)₄] (46 mg, 0.04 mmol) was used in place of [Pt(PPh₃)₄], 6 (42 mg, 58%) was obtained as a redbrown solid. M. p. > 300°C. ¹H NMR (200 MHz, CDCl₃, TMS): $\delta = 2.26$, 2.31, 2.36 (3 s, 15 H, CH₃ + 2 CH₃ + 2 CH₃), 5.20, 5.22 (2 s, 1 H, C₆₀H), 6.90–7.85 (m, 50 H, 6 Ph + 5 C₆H₄) ppm. ³¹P NMR [81.0 MHz, toluene, (CD₃)₂CO lock signal, H₃PO₄]: $\delta = 29.08$, 31.08 (2 s, 2 P) ppm. IR (KBr): $\tilde{v} = 513.0$ (s), 536.0 (m),

579.0 (w), 692.0 (s), 743.0 (m), 1019.0 (w), 1093.0 (w), 1190.0 (m), 1431.0 (m), 1509.0 (s), 2863.0 (w), 2926.0 (w), 2972.0 (w), 3027.0 (w), 3058.0 (w) cm $^{-1}$. UV/Vis (THF): $\lambda_{\rm max}$ (log ϵ) = 239.0 (4.85), 287.7 (4.70), 472.0 (3.89) nm. FAB-MS: mlz=1808 [{(MeC $_6$ H $_4$) $_5$ C $_60$ H}Pd(PPh $_3$) $_2^+$, $_108$ Pd], 1177 [(MeC $_6$ H $_4$) $_5$ C $_60$ H+]. C $_{131}$ H $_{66}$ P₂Pd (1808.33): calcd. C 87.01, H 3.68, P 3.43; found C 86.98, H 3.70, P 3.65.

Computational Details: The geometry optimizations of the 11 isomers for $[(\eta^2-Ph_3C_{60}H)Pt(PPh_3)_2]$ were performed at the DFT B3LYP hybrid functional level by use of the effective core potential basis set LANL2DZ^[17-19] for Pt and P. The standard 6-31G basis sets were chosen for C and H, except for those atoms in the phenyl rings, for which STO-3G was used. A polarization function $[\xi d(P)=0.387]$ was added for $P^{[20]}$ The 1H NMR magnetic shielding tensors were calculated by the Gauge-Including Atomic Orbital (GIAO) method[$^{[21]}$ at the Hartree-Fock level[$^{[22]}$] by use of the LANL2DZ basis set for Pt, the 6-31G** basis set for P and for the H atoms directly bonded to $P^{[3]}$ 0, and the 6-31G basis set for all other atoms. All calculations were performed with the parallel version of the GAUSSIAN 98 software package[$^{[23]}$ 0 on a multi-nodes Beowulf Linux cluster computer system.

Acknowledgments

We are grateful to the National Natural Science Foundation of China for financial support and to Prof. P. J. Fagan for providing the crystal data for $[(\eta^2-C_{60})Pt(PPh_3)_2]$.

^[1] A. G. Avent, P. R. Birkett, J. D. Crane, A. D. Darwish, G. J. Langley, H. W. Kroto, R. Taylor, D. R. M. Walton, J. Chem. Soc., Chem. Commun. 1994, 1463–1464.

^[2] P. R. Birkett, A. G. Avent, A. D. Darwish, I. Hahn, H. W. Kroto, G. J. Langley, J. O'Loughlin, R. Taylor, D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2 1997, 1121–1126.

^[3] M. Sawamura, H. Iikura, E. Nakamura, J. Am. Chem. Soc. 1996, 118, 12850-12851.

^[4] M. Sawamura, H. Iikura, T. Ohama, U. E. Hackler, E. Nakamura, J. Organomet. Chem. 2000, 599, 32-36.

^{[5] [5}a] L.-C. Song, J.-T. Liu, Q.-M. Hu, G.-F. Wang, P. Zanello, M. Fontani, Organometallics 2000, 19, 5342-5351. [5b] L.-C. Song, Y.-H. Zhu, Q.-M. Hu, J. Chem. Res., Synop. 2000, 316-317. [5c] P. Zanello, F. Laschi, M. Fontani, L.-C. Song, Y.-H. Zhu, J. Organomet. Chem. 2000, 593-594, 7-11. [5d] Y.-H. Zhu, L.-C. Song, Q.-M. Hu, C.-M. Li, Org. Lett. 1999, 1, 1693-1695. [5e] L.-C. Song, Y.-H. Zhu, Q.-M. Hu, Polyhedron 1997, 16, 2141-2143. [5f] L.-C. Song, Y.-H. Zhu, Q.-M. Hu, Polyhedron 1998, 17, 469-473. [5g] Y.-L. Song, G.-Y. Fang, Y.-X. Wang, S.-T. Liu, C.-F. Li, L.-C. Song, Y.-H. Zhu, Q.-M. Hu, Appl. Phys. Lett. 1999, 74, 332-334. [5h] L.-C. Song, Y.-H. Zhu, Q.-M. Hu, J. Chem. Res., Synop. 1999, 56-57. [5i] L.-C. Song, J.-T. Liu, Q.-M. Hu, L.-H. Weng, Organometallics 2000, 19, 1643-1647.

^[6] P. J. Fagan, J. C. Calabrese, B. Malone, Acc. Chem. Res. 1992, 25, 134-142.

^[7] V. V. Bashilov, P. V. Petrovshkii, V. I. Sokolov, S. V. Lindeman, I. A. Guzey, Y. T. Struchkov, *Organometallics* 1993, 12, 991–992.

^[8] J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, A. W. Allaf, S. Balm, D. R. M. Walton, J. Chem. Soc., Chem. Commun. 1991, 412–413.

^[9] L.-C. Song, P.-C. Liu, Q.-M. Hu, P. Zanello, M. Fontani, *Chin. J. Chem.* 2000, 18, 395–401.

^[10] P. J. Fagan, J. C. Calabrese, B. Malone, Science 1991, 252, 1160-1161.

- [11] N. Koga, K. Morokuma, Chem. Phys. Lett. 1993, 202, 330-334.
- [12] J. A. López, C. Mealli, J. Organomet. Chem. 1994, 478, 161-171.
- [13] D. L. Lichtenberger, L. L. Wright, N. E. Gruhn, M. E. Rempe, J. Organomet. Chem. 1994, 478, 213-221.
- [14] F. Nunzi, A. Sgamellotti, N. Re, C. Floriani, *Organometallics* 2000, 19, 1628-1634.
- [15] L. Malatesta, C. Cariello, J. Chem. Soc. 1958, 2323-2328.
- [16] L. Malatesta, M. Angoletta, J. Chem. Soc. 1957, 1186-1188.
- ^[17] P. J. Hay, W. R. Wadt, J. Chem. Phys. **1985**, 82, 270–283.
- [18] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298.
- ^[19] P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, 82, 299–310.
- [20] A. Hoellwarth, M. Boehme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Koehler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* 1993, 208, 237–240.
- [21] K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260.

- [22] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497-5509.
- M. J. Frisch.; G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 (Revision A.9), Gaussian, Inc., Pittsburgh PA, 1998.

Received November 16, 2002